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Abstract. The magnetic states of multi-junction superconducting quantum interference device containing
2N identical conventional Josephson junctions are studied by means of a perturbation analysis of the
non-linear first-order ordinary differential equations governing the dynamics of the Josephson junctions in
these devices. In the zero-voltage state, persistent currents are calculated in terms of the externally applied
magnetic flux Φex. The resulting d.c. susceptibility curves show that paramagnetic and diamagnetic states
are present, depending on the value of Φex. The stability of these states is qualitatively studied by means
of the effective potential notion for the system.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 85.25.Dq Super-
conducting quantum interference devices (SQUIDs)

1 Introduction

Ordinary d.c. SQUIDs (Superconducting QUantum
Interference Devices) and π-SQUIDs are interesting dy-
namical systems both for their actual and potential ap-
plications [1–3] and for the richness of their dynamical
properties [4]. Lately, π-SQUIDs have been proposed as
elementary memory devices in quantum computing ap-
plications [5], while asymmetric d.c. SQUIDs have been
shown to possess a ratchet-like potential, which gives rise
to voltage rectification [6]. Multi-junction superconduct-
ing devices, on the other hand, can be adopted as model
systems in studying the magnetic response of granular su-
perconductors [7–9].

In most of the above applications and basic studies,
the exact knowledge of the magnetic metastable states
of this system is of great importance. Therefore, when
the nature of the so-called paramagnetic Meissner effect
(PME) in granular superconductors is to be investigated
by means of models whose basic elements are loops con-
taining Josephson junctions [10], detailed studies of the
electrodynamic properties of multi-junction quantum in-
terferometer models might be useful. In these systems,
the magnetic states can be characterized by the sign of
the persistent current, which, in turn, is seen to depend
upon the applied magnetic flux Φex.

Recently, d.c. SQUID properties have been studied by
means of reduced models arising from a perturbation ap-
proach to the analysis of the complete set of dynamical
equations for the gauge-invariant superconducting phase

a e-mail: rdeluca@unisa.it

differences across the Josephson junctions [4–11]. To zero
order in the SQUID parameter β (i.e., in the limit of
β = 0) the model does not allow discussion of the mag-
netic states of the superconducting system. Nevertheless,
the β = 0 approximation for SQUID systems is widely
used in the literature when the electrodynamic proper-
ties, such as voltage-current characteristics and critical
current and time average voltage versus applied magnetic
flux curves, are to be interpreted [1–3]. The lowest degree
of approximation in β allowing analytical determination
of the magnetic states of the superconducting quantum
interference devices is given by the first order perturba-
tion solutions of the model equations. By this approach
it is possible to determine the d.c. susceptibility and the
persistent currents circulating in the system in terms of
the externally applied magnetic flux Φex [12].

In the present work we determine the magnetic states
of a multi-junction symmetric (equal branch inductance)
superconducting quantum interference device containing
N identical (same coupling and resistive parameters) over-
damped conventional Josephson junctions in each branch,
by generalizing the results obtained for a conventional
symmetric quantum interferometer containing two iden-
tical junctions.

The paper is thus organized as follows. In the next sec-
tion we derive the dynamical equation for a multi-junction
interference device containing 2N identical Josephson
junctions. In the third section, the persistent currents of
these devices is calculated in terms of the externally ap-
plied flux Φex. In the fourth section, by also finding the d.c.
magnetic susceptibility as a function of Φex, it is shown
that the system may present either paramagnetic, either
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Fig. 1. Schematic representation of a multi-junction quantum
interferometer with 2N junctions.

diamagnetic states. The nature of these magnetic states
is discussed in the fifth section, by finding the effective
potential of the system. Conclusions are drawn in the last
section.

2 The dynamical equations

In the present section we shall derive an approximate an-
alytic expression for the dynamical equation of a multi-
junction quantum interference device containing, on each
of the two symmetric branches, N identical point-like
overdamped Josephson junction, with resistive and cou-
pling parameters R and IJ , respectively. As shown in
Figure 1, the gauge-invariant superconducting phase dif-
ferences across the JJs on the left branch and on the
right branch of the device are denoted as ϕk and φk

(k = 1, 2, ..., N), respectively. A bias current IB is in-
jected in the system, splitting into the two branch currents
I1 (left branch) and I2 (right branch), so that: IB = I1+I2.
Since the same current flows trough all JJs on each branch,
and given that all JJs are considered as perfectly identical,
we may consider phase locked states, for which

ϕ1 = ϕ2 = ... = ϕN = ϕ, (1a)

φ1 = φ2 = ... = φN = φ. (1b)

Because of symmetry, the same inductance L pertains
to both superconducting branches, so that we may set
β = LIJ

Φ0
, Φ0 being the elementary flux quantum. Let us

also define the following normalized quantities: i1 = I1
IJ

and i2 = I2
IJ

(normalized branch currents) and Ψex = Φex

Φ0

(normalized applied flux). By setting the total flux linked

to the superconducting loop equal to the sum of the ex-
ternally applied flux Φex and of the induced flux, we have,
in normalized form:

Ψ = Ψex + β (i1 − i2) . (2)

By fluxoid quantization, considering equation (1), we may
write:

ϕ − φ +
2π

N
Ψ = 2π

n

N
(3)

where n is an integer. With the aid of the RSJ model
for the overdamped Josephson junctions in the device and
in the absence of noise, the dynamical equations for the
variables ϕ and φ can be written as follows [1]:

dϕ

dτ
+ sin ϕ = i1, (4a)

dφ

dτ
+ sin φ = i2, (4b)

where τ = 2πRIJ

Φ0
t is a normalized time. By means of

equation (2) and of the charge conservation relation iB =
i1 + i2, we may express the currents i1 and i2 in terms of
the fluxes Ψ and Ψex, so that equations (4a-b) become:

dϕ

dτ
+ sin ϕ − Ψ

2β
=

iB
2

− Ψex

2β
, (5a)

dφ

dτ
+ sin φ +

Ψ

2β
=

iB
2

+
Ψex

2β
. (5b)

By fluxoid quantization, expressed in equation (3), equa-
tions (5a-b) can be written in terms of two more conve-
nient variables ϕA = ϕ+φ

2 and ξ = φ−ϕ
2π = Ψ−n

N . In this
way, we have:

dϕA

dτ
+ cos (πξ) sin ϕA =

iB
2

, (6a)

π
dξ

dτ
+ sin (πξ) cosϕA +

Nξ

2β
=

Ψex − n

2β
. (6b)

Notice that, by setting β̃ = β
N and Ψ̃ex = Ψex−n

N , equa-
tions (6a-b) are formally identical to the dynamical equa-
tions for a SQUID, written in terms of the average phase
difference ϕA and the fluxon number ξ.

This analogy will allow us to make use of already
known results on d.c. SQUIDs. By considering the ap-
plied magnetic flux constant and the phase time evolution
to be much slower than the fluxon dynamics within the
loop [13], we may look for a first-order perturbed solution
ξ (τ) to equation (6b) of the type:

ξ (τ) = Ψ̃ex + β̃ξ1 (τ) , (7)

where, as specified above, β̃ = β
N and Ψ̃ex = Ψex−n

N . By
substituting equation (7) into equation (6b), we find, to
first order in β̃:

ξ (τ) = Ψ̃ex − 2β̃ sin
(
πΨ̃ex

)
cosϕA. (8)
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ϕ̄A = 0 for x >

√
1 +

(
1

4πβ̃

)2

− 1

4πβ̃
;

both ϕ̄A = 0 and ϕ̄A = π for −
(√

1 +
(

1

4πβ̃

)2

− 1

4πβ̃

)
< x <

(√
1 +

(
1

4πβ̃

)2

− 1

4πβ̃

)
;

ϕ̄A = ±π for x < −
[√

1 +
(

1

4πβ̃

)2

− 1

4πβ̃

]
.

(13)

iS =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2y for x >

√
1 +

(
1

4πβ̃

)2

− 1

4πβ̃
;

both − 2y and + 2y for −
(√

1 +
(

1

4πβ̃

)2

− 1

4πβ̃

)
< x <

(√
1 +

(
1

4πβ̃

)2

− 1

4πβ̃

)
;

+2y for x < −
[√

1 +
(

1

4πβ̃

)2

− 1

4πβ̃

]
.

(14)

This expression, when substituted in equation (6a) gives:

dϕA

dτ
+ cos

(
πΨ̃ex

)
sin ϕA + πβ̃ sin2

(
πΨ̃ex

)
sin 2ϕA =

iB
2

.

(9)
The above equation is a reduced model for a d.c. SQUID
having N overdamped identical junctions in each arm. We
notice that the present approach is quantitatively valid [4]
for β < N

π| iB | , or β̃ < 1
π |iB | .

3 Persistent currents

By defining the normalized persistent current iS , in terms
of the stationary solution ϕ̄A of equation (9), as

iS = i1 − i2 =

(
ξ − Ψ̃ex

)

β̃
≈ −2 sin

(
πΨ̃ex

)
cos ϕ̄A, (10)

we shall estimate, by the knowledge of ϕ̄A, the persistent
current for given values of Ψ̃ex and iB. In this way me may
set:

sin ϕ̄A

(
cos
(
πΨ̃ex

)
+ 2πβ̃ sin2

(
πΨ̃ex

)
cos ϕ̄A

)
=

iB
2

.

(11)
In order to make the notation simpler, in solving equa-
tion (11) we make the following substitutions: x =
cos
(
πΨ̃ex

)
, y = sin

(
πΨ̃ex

)
, and z = cos ϕ̄A, so that equa-

tion (11) can be rewritten in the following way:

√
1 − z2

(
x + 2πβ̃y2z

)
=

iB
2

. (12)

For iB = 0, the following solutions of equation (12) for z
can be found in interval [0, 2π): z = ±1, or cos ϕ̄A = 0,
±π, if |x|

2πβ̃y2 > 1; z = ±1, cos−1
(

x
2πβ̃y2

)
and 2π −

cos−1
(

x
2πβ̃y2

)
, if |x|

2πβ̃y2 < 1. By choosing only stable so-
lutions, we have:

see equation (13) above

In this way, we can summarize the analytic solution for
the permanent current for iB = 0 as follows:

see equation (14) above

Notice that the analytic expression of iS in equation (14)
depends upon the value of n through x. The persistent
current described by equation (14) is shown in Figure 2a
for β = 0.1 as a function of the applied flux Ψex for null
bias current and for N = 10 and n = 0. In Figure 2b,
on the other hand, we chose the same parameters, except
for the number of initially trapped fluxons n, which is set
equal to 5. We notice that the bistability region for iS
(where both solutions iS = ±2y are present) is a rather
small interval in the range chosen, appearing over the ex-
ternal flux interval for which

−
⎛
⎝
√

1+
(

1
4πβ̃

)2

− 1
4πβ̃

⎞
⎠<x<

⎛
⎝
√

1+
(

1
4πβ̃

)2

− 1
4πβ̃

⎞
⎠

or, to first order in β̃, -2πβ̃ < x < 2πβ̃. Given β̃ small, we
argue that the bistability region is a very small interval in
the vicinities of semi-integer values of Ψ̃ex.

For iB �= 0, on the other hand, the solutions of equa-
tion (12) for z can be found to first order in the parameter
β̃. In this way, we first square both sides of equation (12),
and then solve the resulting approximated cubic equation
for z by keeping only terms up to first order in β. Finally,
we have:

z = ±
√

1 − i2B
4x2

+
πβ̃ y2i2B

2x3
. (15)

We may see that the above equation does not allow a
real solution for z, if iB > 2 |x|, which means that, if the
junctions are in the running state, there cannot be any
persistent current flow, since the superconducting state of
the whole system is destroyed. We now need to correctly
distinguish between stable and unstable solutions through
phase space representation of equation (9). In order to do
this, let us look at Figures 3a and 3b, where the stable
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Fig. 2. a) iS vs. Ψex curves for iB = 0, β = 0.1, N = 10
and for n = 0. A very small bistability region is present in
the vicinities of Ψex = ±5, ±15, etc. b) iS vs. Ψex curves for
iB = 0, β = 0.1, N = 10 and for n = 5. The bistability region
is now present in the vicinities of Ψex = 0, ±10, etc.

solutions are characterized by the values of ϕ̄A for which
the time derivative goes from positive to negative. As we
notice in Figure 3a, where we take x = cos

(
πΨ̃ex

)
>

0, a stable point is close to the origin. This same point,
however, becomes unstable if we take x = cos

(
πΨ̃ex

)
< 0,

as in Figure 3b. In summary, considering the qualitative
results in Figures 3a–3b, and noticing that z = 0 for iB >
2 |x|, we may write:

z = cos ϕ̄A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+

√
1− i2B

4x2
+

πβ̃y2i2B
2x3

if
iB
2

<x � 1

0 if |x| � iB
2

−
√

1− i2B
4x2

+
πβ̃y2i2B

2x3
if − 1 � x<− iB

2
(16)

where we have taken iB > 0 and the instability interval
length less than iB (i.e., to first order in β̃, 4πβ̃ < iB)
for simplicity. Had we considered the instability interval
length greater than iB, some residual bistability would
have been present in the system.

Determination of the stable solution given above can
be obtained analytically, to first order in β̃, in a more

(a)

(b)

Fig. 3. Phase plane analysis to characterize the stability of
fixed points for the reduced model of equation (9) with N = 10,
β = 0.1 and iB = 0.2. In Figure 2a we set Ψ̃ex = 0 (full line),
Ψ̃ex = 0.2 (dotted line), Ψ̃ex = 0.4 (dashed line). In Figure 2b,
instead, we set Ψ̃ex = 0.6 (full line), Ψ̃ex = 0.8 (dotted line),
Ψ̃ex = 1.0 (dashed line).

rigorous way by considering that the value of the time
derivative of ϕA must go from positive to negative, for
increasing values of ϕA, in the vicinity of ϕ̄A.

Finally, considering equation (14) and the definition of
circulating current given in equation (10), we obtain the
following expression for iS :

iS ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−2y

(√
1 − i2B

4x2
+

πβ̃y2i2B
2x3

)
if

iB
2

< x � 1

0 if |x| � iB
2

2y

(√
1 − i2B

4x2
− πβ̃y2i2B

2x3

)
if − 1 � x < − iB

2
(17)

where, again, we consider 4πβ̃ < iB. Representation of
the circulating currents is given in Figure 4a for iB = 0.2,
β = 0.1, N = 10 and for n = 0 (diamonds) and n = 6
(stars). A net translation to the right of a quantity Ψex = 6
is present in the curve with n = 6. This properties al-
lows us to argue that the curves with n = 5, as shown
in Figure 4b, obtained with the same choice of parame-
ters in Figure 4a, have two paramagnetic states, one for
positive, one for negative flux values, close to the origin.
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These states are characterized by two oppositely circulat-
ing persistent currents, which could be attained by letting
the field vary from small negative to positive values, or
vice versa.

4 Susceptibility

Having derived the persistent currents in the system, the
d.c. susceptibility can be readily found. These quantities
are of interest in the analysis of the magnetic properties of
high temperature superconducting granular systems [14].
The d.c. susceptibility is defined as follows:

χdc =
Ψ − Ψex

Ψex
=

ξ − Ψ̃ex

Ψ̃ex + n
N

= β̃
iS

Ψ̃ex + n
N

. (18)

By the knowledge of iS from equation (17), we may write,
for 4πβ̃ < iB:

χdc≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2β̃
y

Ψ̃ex+
n

N

(√
1− i2B

4x2
+

πβ̃y2i2B
2x3

)
if

iB
2

<x�1

0 if |x| � iB
2

2β̃
y

Ψ̃ex+
n

N

(√
1− i2B

4x2
− πβ̃y2i2B

2x3

)
if −1<x<− iB

2
.

(19)
Representation of χdc vs. Ψex curves are given in Fig-
ures 5a–5b. In particular, in Figure 5a these curves are
shown for iB = 0.2, β = 0.1, N = 10 and n = 0. In
Figure 5b, on the other hand, we show χdc vs. Ψex curves
for iB = 0.2, β = 0.1, N = 10 and n = 5. Apart from the
well known alternate behaviour of the system between dia-
magnetic and paramagnetic states in Figure 5a (n = 0),
we notice, in Figure 5b, paramagnetic signals for Ψex close
to zero, as already noted in the iS vs. Ψex curves for n = 5.

5 Effective potential and phase states

In the previous section, by analyzing the iS vs. Ψex curves,
we have noticed the presence of two different current states
attainable in the vicinities of null applied flux, depending
on the sign of Ψex. In the same interval, for iB = 0, a bista-
bility region, having amplitude proportional to β̃, appears.
Therefore, for low values of β̃, this region is small. More-
over, it tends to disappear for non-null values of the bias
current, as seen in Figures 4a–4b.

In order to qualitatively explain these properties,
let us define the Josephson energy of 2N Josephson
junction as [1]

EJ =
Φ0IJ

2π

[
N∑

k=1

(1 − cosϕk) +
N∑

k=1

(1 − cosφk)

]

=
NΦ0IJ

2π
(2 − cosϕ − cosφ) , (20)

(a)

(b)

Fig. 4. a) iS vs. Ψex curves for iB = 0.2, β = 0.1, N = 10 and
for n = 0 (diamonds) and n = 6 (stars). A net translation of the
second curve to the right of a quantity Ψex = 6 is detectable. b)
iS vs. Ψex curves for iB = 0.2, β = 0.1, N = 10 and for n = 5.
Notice the existence of two current states in the vicinities of
the origin; a positive current state is present at small positive
values of Ψex, and a negative one, for negative values of Ψex.

(a)

(b)

Fig. 5. a) χdc vs. Ψex curves for iB = 0.2, β = 0.1, N = 10
and for n = 0. b) χdc vs. Ψex curves for iB = 0.2, β = 0.1,
N = 10 and for n = 5.
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where we have taken, as before, all junctions as perfectly
equal. By simple trigonometric identities, we may write:

EJ =
NΦ0IJ

π
(2 − cosϕA cosπξ) . (21)

The electrodynamic potential energy, on the other hand,
can be written as follows [1]:

EB = −Φ0IJ

2π

[
N∑

k=1

∫
i1dϕk +

N∑
k=1

∫
i2dφk

]

= −NΦ0IJ

2π

[∫
i1dϕ +

∫
i2dφ

]
. (22)

However, by again expressing the variables ϕ and φ in
terms of ϕA and ξ, we have:

EB = −NΦ0IJ

2π

[∫
iBdϕA − π

∫
iSdξ

]
. (23)

By recalling now equation (10), equation (23) takes the
following more explicit form:

EB = −NΦ0IJ

2π

⎡
⎢⎣iBϕA − π

(
ξ − Ψ̃ex

)2

2β̃

⎤
⎥⎦ , (24)

where the first term can be ascribed to the bias current
contribution and the second to the applied magnetic flux.
By now summing up these two terms, we may write:

Eeff = EJ + EB

=
NΦ0IJ

π

⎡
⎢⎣2−cosϕA cosπξ− iB

2
ϕA+π

(
ξ−Ψ̃ex

)2

4β̃

⎤
⎥⎦.

(25)

We can now express the effective energy Eeff to first order
in the parameter β̃, so that, by means of equation (8), we
obtain:

Eeff =
NΦ0IJ

π

[
2 − cosπΨ̃ex cosϕA

−πβ̃ sin2 πΨ̃ex cos2 ϕA − iB
2

ϕA

]
. (26)

The above expression can be studied for n = N
2 (N even),

in order to have different current states in the vicinities
of Ψex = 0, as in the example in Section 3. Therefore, by
setting Ψ̃ex = Ψex

N − 1
2 , equation (26) becomes

Eeff =
NΦ0IJ

π

[
2−sin

(
π

Ψex

N

)
cosϕA

−πβ̃ cos2
(

π
Ψex

N

)
cos2 ϕA − iB

2
ϕA

]
. (27)

The normalized effective energy eeff = πEeff

NΦ0IJ
is shown,

as a function of the average phase difference ϕA, for β̃ =

0.025 and N = 4 in Figures 6a–6c. In Figure 6a, the zero-
bias eeff vs. ϕA curves are shown for Ψex = 0.1 (full line)
and Ψex = −0.1 (dashed line). We notice that, while for
small positive values of the normalized applied flux (Ψex =
0.1), the phase state at ϕA = 0 is stable, when the field
is lowered to Ψex = −0.1, this state may rapidly decay
to phase states ϕA = ±π. Furthermore, for values of Ψex

outside the bistability range specified in equation (13), the
minima at ϕA = 0 are not anymore present. However, even
though these stable states are present for small negative
values of Ψex (dashed line in Fig. 6a), given the rather
small height of the energy barriers separating this stable
state to the adjacent ones (ϕA = ±π), external noise (as
it could be thermal noise or noise due to the applied field
or to the bias current) could drive the system out of the
ϕA = 0 state to either one of the stable states ϕA = ±π, in
which the circulating current differs in sign from the initial
one (obtained for the phase state ϕA = 0 at Ψex = 0.1).
In Figure 6b we notice that, by considering all minima in
the full-line curve (iB = 0), metastable current states are
present, for Ψex = 0.1, at ϕA = 0 and in the vicinities of
ϕA = ±π. However, when a small bias current is applied
to the system (for example, iB = 0.02, as in the dashed
curve of Fig. 6b), the states ϕA = ±π rapidly decay to
the adjacent ones, a greater probability being associated
to the transition to the state on the right. On the other
hand, in Figure 6c, where a small negative normalized flux
is applied (Ψex = −0.1), for iB = 0 (full line), we notice
that the ϕA = 0 phase state is short-lived, while the phase
states ϕA = ±π can be considered to be long-lived with
respect to the former. Application of the same small bias
current to the system makes it possible to have transitions,
in the presence of noise, from the metastable phase state
ϕA = 0 to the adjacent ones (ϕA = ±π), the highest
probability being associated to the transition from ϕA = 0
to ϕA = π. Higher values of the bias current (iB > 4πβ̃,
to first order in β̃) make the short-lived metastable states
appearing in both Figures 6b and 6c disappear at all.

For n = N
2 (N even) we also exhibit a global view of

the potential energy as a function of the average phase dif-
ference ϕA and the externally applied flux in Figures 7a–7c
for β̃ = 0.025 and N = 4. In particolar, in Figure 7a the
bias current is zero, in Figure 7b iB = 0.4 and in Figure 7c
iB = 0.8. We notice the appearance of well defined minima
in both Figures 7a and 7b, the energy barrier decreasing
for iB increasing from zero to 0.4. These minima are sep-
arated by an even smaller energy barrier for iB = 0.8.

In the above we have hypothesized that noise in the
system could induce transition from one metastable state
to the next; this feature will be studied in details in future
work. The characteristic behaviour described above could
be promising in the perspective of envisioning a system
able to act as a memory cell in quantum computing. As
a matter of fact, it can be shown that the above system,
which we have essentially described by means of a classi-
cal approach, allows extension to a quantum mechanical
analysis [15], thus being a candidate for a two-level quan-
tum system useful for realizing quantum computing ele-
mentary memory cells. In order to operate this system, we
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(a)

(b)

(c)

Fig. 6. Effective potential of the quantum interferometer con-
taining 2N junctions expressed in terms of the average phase
difference ϕA for β̃ = 0.025 and N = 4. a) iB = 0.0, Ψex = +0.1
(full line) and Ψex = −0.1 (dashed line). b) Ψex = +0.1,
iB = 0.0 (full line) and iB = 0.02 (dashed line). c) Ψex = −0.1,
iB = 0.0 (full line) and iB = 0.02 (dashed line).

can use two external control parameters, the bias current
and the externally applied flux. As seen above, both pa-
rameters may be used to get transition from one current
state to the next, and vice versa.

6 Conclusions

We studied the magnetic states of multi-junction su-
perconducting quantum interference device containing N
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Fig. 7. Effective potential as a function of both the average
phase difference ϕA and the externally applied flux Ψex for
β̃ = 0.025 and N = 4, and for: a) iB = 0.0; b) iB = 0.4; c)
iB = 0.8.

identical conventional Josephson junctions in each branch.
The circulating currents and the d.c. susceptibility have
been derived in a closed analytic form by mean of a pertur-
bation analysis of the non-linear first-order ordinary differ-
ential equations governing the dynamics of the Josephson
junctions. It is shown that the metastable magnetic states
can be obtained either by an analytic approach, either by
the effective potential notion for the system.
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From the d.c. susceptibility curves, the presence of
paramagnetic and diamagnetic states, depending on the
value of the normalized applied magnetic flux Ψex, can
be detected. In particular, when the number of trapped
fluxons in the system is equal to N

2 (N even), two param-
agnetic current states of opposite signs are present in the
system, one for very small positive values, the other for
small negative values of Ψex. The stability of all metastable
states appearing in this case has been qualitatively stud-
ied and possible applications of these devices to quantum
computing have been briefly mentioned.
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